LOW-IMPACT DEVELOPMENT STRATEGIES FOR PANTHER ISLAND

Presenter	Email	Address/Phone
Woody Frossard, TRVA	woody.frossard @trinityrivervision.org	Trinity River Vision Authority 307 W. Seventh St. Suite 100 Ft. Worth, Texas 76102 817-698-0700
Mark Rauscher, City of Fort Worth	Mark.Rauscher @fortworthtexas.gov	City of Fort Worth 1000 Throckmorton Fort Worth, TX 76102 817-392-2446
Scott Hubley, P.E., CFM	skh@freese.com	Freese & Nichols, Inc. 4055 International Plaza
Justin Oswald, P.E., CFM	jto@freese.com	Suite 200
Garrett Johnston, P.E., CFM	jgj@freese.com	Fort Worth, Texas 76109 817-735-7300
Mikel Wilkins, P.E	mwilkins@verdunity.com	Verdunity 17000 Preston Road, Suite 110 Dallas, TX 75248 214-729-8733

This poster will describe a sliding scale of LID implementation options developed in support of the redevelopment of Panther Island in Fort Worth. The implementation options developed represent conceptual approaches to integrate LID elements into the public drainage infrastructure following completion of the Trinity River Project.

The Trinity River Vision Authority commissioned a mass grading and storm drain master plan for the Panther Island development, which includes a proposed urban lake and canal network. Because water quality and aesthetics are crucial to the project's success, the storm drain master plan included conceptual design and modeling of several LID elements, including green streets, rain gardens, and green roofs. We evaluated three levels of increasing LID implementation along with a base level, which assumed traditional development practices. For each implementation level, we adjusted the base hydraulic models to account for the hydrologic benefits of green infrastructure. We also determined the water quality volume treated by each implementation level. Finally, we developed business case evaluations for each implementation level. These evaluations accounted for construction and operation costs, estimated increases in property values, and intangibles such as the subjective value of increased water quality to the surrounding community. This study has served as a valuable tool to communicate the economic and environmental benefits of LID to policy-makers.